EELSpecNetModel_CNN_10DThe main model class for spectral deconvolution.
input_size (int): Size of the input spectrum (default: 2048)compile(optimizer, loss, metrics): Compile the model with specified optimizer and loss functionfit(x, y, validation_split, batch_size, epochs): Train the model on input datapredict(x): Generate predictions for input dataevaluate(x, y): Evaluate model performance on test dataGenerateDataModule for generating training and evaluation data.
training_signal_set(size, snr, psf_width_min, psf_width_max, dim, noise_level): Generate training dataeval_signal_set(size, snr, psf_width_min, psf_width_max, dim, noise_level): Generate evaluation dataimport EELSpecNet
import GenerateData as gene
# Create model
model = EELSpecNet.EELSpecNetModel_CNN_10D(2048)
# Generate training data
train_target, train_initial = gene.training_signal_set(
6000, # size
-2, # snr
0.005, # psf_width_min
0.015, # psf_width_max
2048, # dim
0.05 # noise_level
)
# Train model
model.fit(train_initial, train_target,
validation_split=0.16,
batch_size=16,
epochs=1000)