
MIS Checklist

Spencer Smith

November 5, 2020

• Follows writing checklist (full checklist provided in a separate docu-
ment)

� LATEX points

� Structure

� Spelling, grammar, attention to detail

� Avoid low information content phrases

� Writing style

• MIS Module Classifications

� Types that only hold data (records) are modelled as exported
types. For instance, the StdntAllocTypes module in A2: https://
gitlab.cas.mcmaster.ca/smiths/se2aa4 cs2me3/blob/master/Assignments/
A2/A2.pdf)

� Types that have data (state) and behaviour are modelled as ADTs.
The MIS should use the keyword Template. An example is the
BoardT ADT given at https://gitlab.cas.mcmaster.ca/smiths/se2aa4
cs2me3/blob/master/Assignments/A3/A3Soln/A3P1 Spec.pdf

� Abstract objects are used when there is only one instance. There
is state and behaviour. This most often comes up for “global”
reader and writer modules. For instance, a module that does
logging. Abstract objects do NOT use the word Template in
the main header. An example is given in the SALst module of
A2: https://gitlab.cas.mcmaster.ca/smiths/se2aa4 cs2me3/blob/
master/Assignments/A2/A2.pdf

1

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf


� Library modules are used when there is only behaviour, no state.
They are defined as Modules, but State Variables and Environ-
ment Variable fields say “None.”

� If the module’s MIS can be parameterized by type, then the key-
word Generic is used. Generic modules are usually also Tem-
plate modules, but not necessarily. An example is given in the
Generic Stack Module (Stack(T)) given in A3: https://gitlab.cas.
mcmaster.ca/smiths/se2aa4 cs2me3/blob/master/Assignments/A3/
A3Soln/A3P1 Spec.pdf

� Abstract objects will have some kind of initialization method

� Abstract objects will have an assumptions that programmers will
initialize first, or a state variable that is set from False to True
when the Abstract object is initialized - this state variable then
needs to be checked for each access program call

• MIS and Mathematical syntax

� Exported constants are “hard-coded” literal values, not variables.
Constants are values that are known at specification (and therefore
compile) time

� Operations do not mix incorrect types. For instance, a character is
not added to an integer, an integer is not “anded” with a Boolean,
etc.

� Our modified Hoffmann and Strooper notation is used, or any new
notation is clearly defined.

• MIS Semantics for each module

� Each access program does something - either an output, or a state
transition

� Access programs either change the state of something, or have an
output. Only rarely should an access program do both (as it does
for the constructor in an ADT.)

� If there is an entry in the state transition, then the state of some-
thing changes. The state change might be the local state variables,
the state variables for another module, or an environment variable.

� Outputs use out := ...

2

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf


� Exceptions use exc := ...

� If the state invariant is satisfied before an access program call, it
will remain satisfied after the call

� State invariant is initially satisfied

� Local functions make the specification easier to read (there is no
requirement that the local functions will actually be implemented
in code)

� Modules that deal with files, the keyboard, or the screen, have
environment variables to represent these respective entitites

� Symbols are from SRS - not yet translated to code names (that is
use θ, not theta

• MIS Quality inspection for each module

� Consistent

� Essential

� General

� Implementation independent

� Minimal

� High cohesion

� Opaque (information hiding)

• MIS Completeness

� All types introduced in the spec are defined somewhere

� All modules in MG are in the MIS

� All required sections of the template are present for all modules

3


