
Project Title: System Verification and
Validation Plan for SPDFM

S. Shayan Mousavi M.

December 20, 2020

1 Revision History

Date Version Notes

Oct 29 2020 1.0 First Draft

i

Contents

1 Revision History i

2 Symbols, Abbreviations and Acronyms iv

3 General Information 1
3.1 Summary . 1
3.2 Objectives . 1
3.3 Relevant Documentation . 1

4 Plan 2
4.1 Verification and Validation Team 2
4.2 SRS Verification Plan . 2
4.3 Design Verification Plan . 3
4.4 Implementation Verification Plan 3
4.5 Automated Testing and Verification Tools 4
4.6 Software Validation Plan . 4

5 System Test Description 4
5.1 Tests for Functional Requirements 4

5.1.1 Light Source Calculation Verification (and/or Valida-
tion) Tests . 5

5.2 Tests for Nonfunctional Requirements 13
5.2.1 Usability . 14
5.2.2 Maintainability . 14

5.3 Traceability Between Test Cases and Requirements 15

6 Unit Test Description 15
6.1 Unit Testing Scope . 16
6.2 Tests for Functional Requirements 16

6.2.1 Module 4: Constant parameters module (M4) 16
6.2.2 Module 5: Input parameters modules (M5) 17
6.2.3 Module 6: Input Mesh modules (M6) 17

6.3 Tests for Nonfunctional Requirements 18
6.4 Traceability Between Test Cases and Modules 18

ii

7 Appendix 21
7.1 Symbolic Parameters . 21
7.2 Usability Survey Questions? 21

List of Tables

1 Input data (files) for automated testing of the light source setup 6
2 Output files for visual inspection of the light source setup . . . 8
3 Input data, required for SPDFM a complete FEM simulations

used in Testid3. 11
4 Traceability Matrix Showing the Connections Between Tests

and Functional and Nonfunctional System Requirements . . . 15
5 Input data (files) for input module (M5) unit testing 17
6 Traceability Matrix Showing the Connections Between Tests

and Modules. Modules that are not in the table are beyond
scope of testing plan in this work 18

iii

2 Symbols, Abbreviations and Acronyms

symbol description

T Test

VnV verification and validation

SPDFM Surface Plasmon Dynamics Finite Method

MNPBEM Metallic NanoParticle Boundary Element Method

The complete table of symbols, abbreviations and acronyms can be found in
the SRS document of the software.

iv

https://github.com/shmouses/SPDFM/tree/master/docs/SRS

This document provides the information on validation and verification
plans implemented for the SPDFM software. In this regard, the general
approaches and plans are initially discussed and afterwards specific test cases
and approaches for validation and verification of functional and nonfunctional
requirements (can be found in SRS) are reviewed. VnV plans here are a
combination of manual (assigned to a member of the VnV team to assess) and
automated testing approaches to evaluate the correctness of the information
(whether input or output) or satisfaction of a goal in SPDFM.

3 General Information

3.1 Summary

The SPDFM software is a software for calculating plasmon-enhanced electric
field and electric current in a meshed geometry. This software should be
able to setup an optical source (given the related parameters) and study how
electric field and current densities in the dielectric are affected by illumination
of this light source. The calculations in this software are based on the newly
established theory of surface plasmon oscillations, nonlocal hydrodynamic
theory of surface plasmons (Hiremath et al., 2012).

3.2 Objectives

This document tries to address the most important areas of the SPDFM
software that can act like bottle necks of the system and make sure these areas
function properly. In this regard, following sections will discuss how these
key aspects, which include setting up a light source, having properly meshed
geometry, well defined dielectric environment, and theoretical formulation are
verified. These areas are reflected within the functional and nonfunctional
system requirements in Section 5 of the SRS document. In this software
some Python libraries are implemented such as FEniCS. The validity of these
libraries is accepted and will not be checked here.

3.3 Relevant Documentation

The relevant documentation for SPDFM, including the problem statement
(Mousavi (2020a)), SRS (Mousavi (2020b)), SRS checklist (Smith (2020)),

1

https://github.com/shmouses/SPDFM/tree/master/docs/SRS
https://github.com/shmouses/SPDFM/tree/master/docs/SRS

VnV report, MG, and MIS can be found in the devoted GitHub repository
to this software. For theoretical aspects Hiremath et al. (2012), Monk et al.
(2003), and Maier (2007) are the major important resources used in this
software.

4 Plan

4.1 Verification and Validation Team

The VnV team members in this work and their contributions are as below.

� S. Shayan Mousavi M. (author): reviewing all the documenta-
tions, providing test cases and their execution, verifying the theoretical
aspects and their implementation.

� Dr. Spencer Smith (CAS 741 instructor): reviewing the design
of the software, all documentations, and the documentation style.

� S. Parsa Tayefeh Morsal (domain expert): reviewing all docu-
mentations.

� Siddharth (Sid) Shinde (secondary reviewer): reviewing VnV
document.

� Gabriela Sánchez Dı́az (secondary reviewer): reviewing MG
and MIS documents.

� Dr. Gianluigi Botton (supervisor): reviewing theoretical aspects
and finite element method implemented in SPDFM.

� Dr. Alexander Pofelski (field expert): reviewing theoretical as-
pects, finite element method implemented in SPDFM, and all docu-
mentations.

4.2 SRS Verification Plan

The SPDFM shall be verified in the following ways:

Initial reviews from assigned members of the VnV team (Dr. Spencer Smith,
S. Parsa Tayefeh Morsal, Naveen Ganesh Muralidharan, and Shayan Mousavi).

2

https://github.com/shmouses/SPDFM

In this regard, the document shall be manually reviewed using the SRS check-
list (Smith (2020)) upon its initial version.

Secondary review by the author (Shayan Mousavi). The SRS document shall
be reviewed after receiving initial reviews, and completion of VnV document.

Final review by the author (Shayan Mousavi) and the instructor (Dr. Spencer
Smith). The document shall be manually reviewed according to the SRS
checklist (Smith (2020)) after MG and MIS development.

Review of theoretical aspects by the field experts (Dr. Gianluigi Botton,
Dr. Alexander Pofelski, and Shayan Mousavi). Theories used in the SRS
document shall be reviewed manually with respect to the governing relations
in the realm of plasmonic physics (Maier (2007), Hiremath et al. (2012),
Monk et al. (2003)).

Feedback received from interested contributors through issue tracker in GitHub
platform will also be used to improve this document.

4.3 Design Verification Plan

The design shall be verified by ensuring that key aspects in SPDFM are,
as listed in Section 3.2. In this regard, the system functional requirements
shall be tested initially, as outlined in 5.1, and in following the nonfunctional
requirements will be review, as outlined in 5.2.

4.4 Implementation Verification Plan

The implementation shall be verified in the following ways:

� Code Walkthrough: This process will be performed by the author
(Shayan Mousavi) and the field expert (Alex Pofelski). Code walk-
though in this work follows the procedure suggested in MIT website
(mit.edu, 1997) and uses their code walkthrough checklist.

� System Tests: System tests will be carried out as listed in Section 5.
These tests target functional and nonfunctional requirements listed in
the SRS document. However, as there is an overlap between input

3

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/BlankProjectTemplate/docs/SRS/SRS-Checklist.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/BlankProjectTemplate/docs/SRS/SRS-Checklist.pdf
https://github.com/shmouses/SPDFM/tree/master/docs/VnV
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/BlankProjectTemplate/docs/SRS/SRS-Checklist.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/BlankProjectTemplate/docs/SRS/SRS-Checklist.pdf
http://www.mit.edu/~mbarker/ideas/review.txt
https://github.com/shmouses/SPDFM/tree/master/docs/SRS

related functional requirements (R1 and R2) and SPDFM modular de-
sign, to avoid repetition, these requirements are only tested in Section
6. System tests are conducted either manually or automatically which
is outlined for each test individual in section 5.

4.5 Automated Testing and Verification Tools

Automated testing of SPDFM is conducted using Pytest library in Python
or a custom program that is written by the author (author names these
programs as auxiliary codes). These tests are either performed by prede-
termining some user inputs and comparing some targeted parameters with
their expected values automatically (using Pytest) or they import different
modules from SPDFM and by inputting required parameters and extract the
data and superimpose the results on the expected output obtained from other
approaches. Automated testings for each test case is separately outlined in
Section 5.1 and Section 6.

4.6 Software Validation Plan

Software validation due to the lack of experimental data is beyond scope this
work.

5 System Test Description

5.1 Tests for Functional Requirements

The subsections below are designed to cover R3 and R4 functional require-
ments of the system, which are listed in Section 5 of the SRS document.
As modular design of SPDFM has modules that are directly responsible for
data input, corresponding functional requirements (R1 and R2, Section 5 of
the SRS document) are tested in the unit testing section of this document
(Section 6) to avoid repetition. It also worth mentioning that as SPDFM
is written in Python, some areas of the verification such as variable types
(integer, float, string, etc.), and existence of input files with proper format in
the given file path are automatically tested by Python and are beyond scope
of this document to be discussed here.

4

pytest.org
https://github.com/shmouses/SPDFM/tree/master/docs/SRS

For all the tests below, the tolerance for value equality is 10−5. In this
regard, if a test case states that a parameter should be equal to a specific
value, it means that the aimed value, and value of the tested parameter
should be within tolerance-level proximity of each other.

5.1.1 Light Source Calculation Verification (and/or Validation)
Tests

Test R 3: Verifying light source setup

1. Test id1: Calculation of the electric field of the light source

Control: Automated

Initial State: N/A

Input: Polarity, direction, frequency of a plane wave light source, and
a meshed geometry are given using input files and input data indicated
in Table 1.

Output: Below outputs should be generated for each of the real and
imaginary parts of the electric field separately.

� Superimposed plot of light wave oscillation towards the light prop-
agation axis (call this line L) calculated by SPDFM and calculated
by python built in functions.

� Difference between two calculated values at each point of the space
that is located on the line L. line L is the line that parallel to the
direction of the light source and passes the point (0, 0, 0) of the
space.

� Measuring execution time of the calculations.

Test Case Derivation: This test evaluates how precise external FEM
toolbox (FEniCS) in SPDFM calculates both real and imaginary parts
of the electric field of the light source in the space. In this test two
different frequencies are being studied; low frequency at 600 THz (visi-
ble range which is important for the future studies) and high frequency
at 30000 for giveing visibility to oscillations of the electric field in the
nanometer-scaled space are considered. All meshes are cubic geome-
tries of 40 nm length but density of the mesh is sorted from low to high

5

Test Cases: Test 1 Test 2

Input file LS t1.txt LS t2.txt

Polarity 0,1,0 0,1,0

Direction 1,0,0 1,0,0

Frequency 600 30000

(THz)

Mesh Input G cube 10node.xml G cube 10node.xml

G cube 10node physical region.xml G cube 10node physical region.xml

G cube 10node facet region.xml G cube 10node facet region.xml

Test Cases: Test 3 Test 4

Input file LS t1.txt LS t2.txt

Polarity 0,1,0 0,1,0

Direction 1,0,0 1,0,0

Frequency 600 30000

(THz)

Mesh Input G cube 20node.xml G cube 20node.xml

G cube 20node physical region.xml G cube 20node physical region.xml

G cube 20node facet region.xml G cube 20node facet region.xml

Test Cases: Test 5 Test 6

Input file LS t1.txt LS t2.txt

Polarity 0,1,0 0,1,0

Direction 1,0,0 1,0,0

Frequency 600 30000

(THz)

Mesh Input G cube 40node.xml G cube 40node.xml

G cube 40node physical region.xml G cube 40node physical region.xml

G cube 40node facet region.xml G cube 40node facet region.xml

Table 1: Input data (files) for automated testing of the light source setup

to study impact of mesh density on the precision of the calculated light
source.

6

https://github.com/shmouses/SPDFM/tree/master/src/Input/LS_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/LS_t2.txt
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_10node.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_10node.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_10node_physical_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_10node_physical_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_10node_facet_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_10node_facet_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Input/LS_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/LS_t2.txt
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_20node.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_20node.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_20node_physical_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_20node_physical_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_20node_facet_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_20node_facet_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Input/LS_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/Input/LS_t2.txt
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_40node.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_40node.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_40node_physical_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_40node_physical_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_40node_facet_region.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_cube_40node_facet_region.xml

How test will be performed: This test can be executed by running
test ls.py; this code is an auxiliary code which imports SPDFM mesh
input module, data structure module, and the function that sets up the
light source. This code is not Pytest controlled and instead of pass/fail
results it provides the user with quantitative results. Shayan Mousavi
is responsible for writing and execution of this test.

7

https://github.com/shmouses/SPDFM/tree/master/src/test_ls.py

Test Cases: Test 1 Test 2

Output files testid2-1 Efield real.pvd testid2-2 Efield real.pvd

testid2-1 Efield imag.pvd testid2-2 Efield imag.pvd

Test Cases: Test 3 Test 4

Output files testid2-3 Efield real.pvd testid2-4 Efield real.pvd

testid2-3 Efield imag.pvd testid2-4 Efield imag.pvd

Test Cases: Test 5 Test 6

Output files testid2-5 Efield real.pvd testid2-6 Efield real.pvd

testid2-5 Efield imag.pvd testid2-6 Efield imag.pvd

Table 2: Output files for visual inspection of the light source setup

2. Test id2: Visual inspection of the electric field propagation of the light
source

Control: Manual

Initial State: N/A

Input: light polarity and direction, a frequency, and a meshed geometry
are given using input files and input data indicated in Table 1.

Output:

� exported .pvd files containing the interpolated real and imaginary
parts of the electric field of the light source in the entire space.
These files are named as mentioned in Table 2.

Test Case Derivation: This test visually evaluates the propagation of
electric field in space. In this regard, the extracted pvd map of the
electric field should be opened by a pvd reader (suggestion: Paraview
software). If 3D colour map view is selected for illustration of the result
(which is suggested) alternating domains are expected to be seen with
domain width equal to wavelength of the light source. In this regard, for
600 THz source the wavelength is ∼499 nm, thus no alternation should
be seen in real domain (due to the size of the mesh) and a dipole domain
alternation should be observed in the result. The wavelength for the
30000 THz source is ∼10 nm, thus, alternating domains of the same

8

https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://www.paraview.org/
https://www.paraview.org/

width is expected. However, user should observe a π
2

shift between
real and imaginary components. Same colour domains are elongated
towards polarity vector and colour alternation should happen towards
the propagation vector (direction vector).

How test will be performed: The pvd maps can be obtained by exe-
cuting test visual ls.py. Shayan Mousavi is responsible for writing and
execution of this test.

9

https://github.com/shmouses/SPDFM/tree/master/src/test_visual_ls.py

Test R 4: Verifying calculated electric field and electric current
density

1. Test id3: Plasmon enhanced electric field calculation compared to
boundary element simulation

Control: Manual

Initial State: N/A

Input: Input data is as listed in Table 3. These files, as is indicated
in the Table 3, include all the required data for initiation of a SPDFM
simulation. The meshed geometry in this test is a 20 nm in diameter
nanoparticle embedded in the vacuum environment of diameter 40 nm.
These 20 nm-sized particles are either simulated as an empty shell or
as a particle with volume; see Table 3. Moreover, test cases here are
divided into three separate sets of input with different number of nodes
in the mesh.

Output: Below outputs should be generated:

� Simulation results are expected to be extracted as the pvd files
and store Superimposed plot of electric field intensity vs. distance
from the sphere surface for both MNPBEM simulated electric field
and SPDFM. These plot will be provided for two directions one
passing the centre of space point (0, 0, 0) and is parallel to (0, 1,
0) and the other one is parallel to (1, 0, 0).

� Extracted data from

Test Case Derivation: In this test excited electric field by a plane wave
of 400 nm wavelength, around a 20 nm diameter sphere is calculated
by SPDFM and MNPBEM toolbox. MNPBEM is a boundary element
method (BEM) software for simulating plasmon activities is nanopar-
ticles (Hohenester and Trügler, 2012). Although in MNPBEM, param-
eter determination is not as flexible as in SPDFM, and some discrep-
ancies are expected due to the implementation of different theories (lo-
cal quasi-static vs. non-local hydrodynamic) and different techniques
(BEM vs FEM), MNPBEM result can still be compared with FEM
simulations. This comparison should be closer when in FEM on the

10

https://physik.uni-graz.at/mnpbem/

Test Cases: Test 1 Test 2

Input files Input t1.txt Input t1.txt

Polarity 0, 1, 0

Direction 1, 0, 0

Lambda(init) (nm) 400

Lambda(fin) (nm) 500

Steps 1 //

ε0 (F/m) 8.85 × 10−12

µ0 (H/m) 1.25 × 10−6

µ1 (H/m) 1.25 × 10−6

γ (THz) 17.94

Plasma freq. (THz) 2165

β2 (m2/s2) 1.16 × 1012

Input mesh Set1 G shell t1.xml G fill t1.xml

(low mesh density) G shell pr t1.xml G fill pr t1.xml

G shell fc t1.xml G fill fc t1.xml

177 nodes 178 nodes

Test Cases: Test 3 Test 4

Input files Input t1.txt Input t1.txt

// // //

Input mesh Set2 G shell t2.xml G fill t2.xml

(medium mesh density) G shell pr t2.xml G fill pr t2.xml

G shell fc t2.xml G fill fc t2.xml

2306 nodes 1268 nodes

Test Cases: Test 5 Test 6

Input files Input t1.txt Input t1.txt

// // //

Input mesh Set3 G shell t2.xml G fill t2.xml

(high mesh density) G shell pr t3.xml G fill pr t3.xml

G shell fc t3.xml G fill fc t3.xml

2306 nodes 2613

Table 3: Input data, required for SPDFM a complete FEM simulations used
in Testid3. 11

https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/Mesh
https://github.com/shmouses/SPDFM/tree/master/src/Mesh
https://github.com/shmouses/SPDFM/tree/master/src/Mesh
https://github.com/shmouses/SPDFM/tree/master/src/Mesh
https://github.com/shmouses/SPDFM/tree/master/src/Mesh
https://github.com/shmouses/SPDFM/tree/master/src/Mesh
https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_shell_t2.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_fill_t2.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_shell_pr_t2.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_fill_pr_t2.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_shell_fc_t2.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_fill_fc_t2.xml
https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_shell_t3.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_fill_t3.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_shell_pr_t3.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_fill_pr_t3.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_shell_fc_t3.xml
https://github.com/shmouses/SPDFM/tree/master/src/Mesh/G_fill_fc_t3.xml

boundary of the target particle is meshed instead of the whole vol-
ume (G Shell t2.xml). In this regard, for a 20 nm diameter sphere
made of gold (parameters obtained from Grady et al. (2004)) that is
only meshed on the surface, electric field intensity is compared between
MNPBEM and SPDFM simulations in direction of light propagation
(1, 0, 0) and polarity (0, 1, 0). To see how presence of the volume af-
fects these results, a 20 nm fully meshed gold sphere is also compared
with the MNPBEM results. As MNPBEM simulations use Gaussian
units the output cannot be directly compared and here

How test will be performed: Executing test efield fem mnpbem.py au-
tomatically initiates the test and simulations will be stored in Test Out-
put folder. MNPBEM results are already simulated and results and the
codes in MATLAB are provided in the MNPBEM folder. For compar-
ing the MNPBEM results with SPDFM results, stored files should be
opened with a .pvd viewer (ParaView is suggested). These results are
analyzed in the VnV report document. Shayan Mousavi is responsible
for writing and execution of this test.

12

https://github.com/shmouses/SPDFM/tree/master/src/test_efield_fem_mnpbem.py
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/Test Output
https://github.com/shmouses/SPDFM/tree/master/src/MNPBEM
www.paraview.org

2. Test id4: Plasmon enhanced electric current density testing

Implementation and execution of this test is beyond scope of the
current version of this document and it is not possible to be delivered
within the strict time window of CAS741. However, it is presented here
to show the authors intention of conducting this test in the future.

Control: Automated

Initial State: N/A

Input: Files regarding Tests 2, 4, and 6 in Table 3. These files include
all the required data for initiation of a FEM simulation.

Output: Below outputs shall be obtained:

� Superimposed plots of current density calculated by SPDFM and
Mie theorem solution for spherical particles (analytical solution)
along x-axis (light propagation) and y-axis (light polarity).

� Difference between two calculated values at each point along the
mentioned axes.

Test Case Derivation: According to Mie theorem the analytical solu-
tion for nonlocal hydrodynamic electromagnetic response of a spherical
particle can be calculated.

How test will be performed: Implementation is planned for the future.

5.2 Tests for Nonfunctional Requirements

Although it is believed that testing nonfunctional requirements in a short
time-frame with limited number of users is not applicable and would not
necessarily provide meaningful data, the plans for testing these areas are
provided here. This plans show intention and approach of the author for
verification of nonfunctional requirements, albeit in the future. The report
reflecting results of tests mentioned below is beyond scope of the current
draft of the VnV report but as soon as the enough data is gathered, the
corresponding analysis will be released.

13

5.2.1 Usability

Test NR1: Capability of execution of the software

1. Test id5: Usability

Type: Usability Survey

Initial State: The system being used should already have Python3, and
FEniCS toolbox installed on.

Input/Condition: A usability survey with the questions listed in Sec-
tion 7.2. For execution of a simulation, data provided in Test? is
suggested to be used.

Output/Result: Survey results

How test will be performed: each participant shall install the software
on a system and try to run a simulation. Respondents will be asked
to rank their experience of installing and running a module. A final
average grade of 3 will indicate that the users found the system to have
average usability. The higher the score,the better the perception of
usability. Shayan Mousavi and Alexander Pofelski shall be participate
this test. This approach is suggested by Michalski (2019).

5.2.2 Maintainability

Test NR2: Maintainability and expandability of the software

1. Test id6: Maintainability

Type: Maintainability Walkthrough

Initial State: N/A

Input/Condition: production version of SPDFM has been released.

Output/Result: A graded report describing the maintainability of the
repository

How test will be performed: Dr. Alexander Pofelski shall check the
repository for the following documentation: SRS, VnV Plan, MG, MIS,
User Guide. He shall mark 1 point for each of the above documents.
He shall read through each of the above documents and provide a grade

14

between 1 and 5 for clarity of the writing. A score of 1 represents a
document that is hard to understand, and a score of 5 represents a
document that is easy to understand. The user should also grade the
traceability of each document. A score of 1 represents no links within
the report, and a score of 5 represents many links between sections of
the report. The user shall then divide the sum of the scores for all
of the reports by 5. A final average grade of 3 will indicate that the
users found the system to have average Maintainability. The higher
the score,the better the perception of Maintainability. This approach
is suggested by Michalski (2019).

5.3 Traceability Between Test Cases and Requirements

Table 4 shows the connection between functional and nonfunctional require-
ments and the tests provided in this document.

R1 R2 R3 R4 NR1 NR2 NR3

Test id1 X

Test id2 X

Test id3 X

Test id4 X

Test id5 X X

Test id6 X

Test id7 X

Test id8 X

Test id9 X

Table 4: Traceability Matrix Showing the Connections Between Tests and
Functional and Nonfunctional System Requirements

6 Unit Test Description

The modular design of SPDFM is introduced in MG document (MGS), and
discussed in MIS document (MIS); according to these documents SPDFM
is consist of eight modules. These modules are assigned to input the data,

15

input the mesh geometry, storing and organizing the data, calculate the
electric field and electric current density, and output the data.

6.1 Unit Testing Scope

In the process of SPDFM verification, the modules that are the most empha-
sized on are the input (M5 and M6, MG) and output (M8, MG) modules.
As the finite element solver module (M7, MG) uses an external finite ele-
ment solver (FEniCS), and due to the fact that the obtained results from
this module are separately verified within system verification section (Sec-
tion 5), verifying M7 is beyond the unit testing scope. Moreover, hardware
hiding module (M1, MG), SPDFM control module (M2, MG), data struc-
ture module (M3, MG), and output module (M8, MG) are not being tested
here. About the data structure module (M3), it should be mentioned that
as this module is being used in all other modules, it can be assumed that
this module is being tested indirectly while others are verified. The reason
that output module is not tested is that this module is majorly depends on
the output module of the external FEM solver (FEniCS toolbox). Thus, as
in this work it is assumed that FEniCS is verified, this module is exempted
from testing.

6.2 Tests for Functional Requirements

6.2.1 Module 4: Constant parameters module (M4)

As the constant parameter module (M4, MIS and MG) is assigned to be
a template object that holds the constants used in project, unit testing is
performed by checking all the values stored in this module.

1. Test id7

Type: Automatic

Initial State: N/A

Input: The constant values used in the SPDFM are stored in con-
stants.txt.

Output: PASS, if all the constant values in the template module is
equal to (in the tolerance level distance of) the values stores in the
constant.txt; FAIL, otherwise.

16

www.fenics.org
https://github.com/shmouses/SPDFM/tree/master/src/constants.txt
https://github.com/shmouses/SPDFM/tree/master/src/constants.txt

Test Cases: Test 1 Test 2 Test 3

Input files Input t1.txt Input t2.txt Input t3.txt

Table 5: Input data (files) for input module (M5) unit testing

Test Case Derivation: The constant parameters used in the code should
be equal to the constant parameters in Table 2 of the SRS document.

How test will be performed: By execution of test const.py using pytest,
all the values in the constant parameter object (template module M4,
MG) will be tested.

6.2.2 Module 5: Input parameters modules (M5)

1. Test id8

Type: Automatic

Initial State: N/A

Input: In this test the input data is as stated in Table 5. constants.txt.

Output: Pass, if all the constant values in the template module is equal
to (in the tolerance level distance of) the values stored in the input file;
Fail, otherwise.

Test Case Derivation: This test only verifies if input module can prop-
erly store data in the data structure.

How test will be performed: By execution of test inputparam.pyperformance
of input module (M5, MG and MIS) will be tested.

6.2.3 Module 6: Input Mesh modules (M6)

1. Test id9

Type: Manual

Initial State: N/A

Input: In this test the inputs are mesh files listed in Table 3.

17

https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t1.txt
https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t2.txt
https://github.com/shmouses/SPDFM/tree/master/src/Input/Input_t3.txt
https://github.com/shmouses/SPDFM/tree/master/src/test_const.py
https://github.com/shmouses/SPDFM/tree/master/src/constants.txt
https://github.com/shmouses/SPDFM/tree/master/src/test_inputparam.py

M4 M5 M6 M7

Test id1 X

Test id2 X

Test id3 X

Test id4 X

Test id5

Test id6

Test id7 X

Test id8 X

Test id9 X

Table 6: Traceability Matrix Showing the Connections Between Tests and
Modules. Modules that are not in the table are beyond scope of testing plan
in this work

Output: N/A Test Case Derivation: This test aims to verify that mesh
input module is capable of inputting a mesh and storing it in the data
structure module and user can extract (plot) later. In this regard,
test inputmesh.py uses mesh input module to input and store a mesh
then by plotting it examines if the mesh is properly restored or not.

How test will be performed: By executing test inputmesh.py meshes in
Table 3 will be input and stored using mesh input module and then they
will be called and plotted. Shayan Mousavi is responsible of executing
this test.

6.3 Tests for Nonfunctional Requirements

Unit testing the nonfunctional requirements in beyond scope and time-frame
of this work.

6.4 Traceability Between Test Cases and Modules

The connections between tests and modules is indicated in Table 6.

18

https://github.com/shmouses/SPDFM/tree/master/src/test_inputmesh.py
https://github.com/shmouses/SPDFM/tree/master/src/test_inputmesh.py

References

Spdfm/docs/design/mg at master · shmouses/spdfm. https://github.

com/shmouses/SPDFM/tree/master/docs/Design/MG. (Accessed on
12/16/2020).

Spdfm/docs/design/mis at master · shmouses/spdfm. https://github.

com/shmouses/SPDFM/tree/master/docs/Design/MIS. (Accessed on
12/16/2020).

Nathaniel K Grady, Naomi J Halas, and Peter Nordlander. Influence of
dielectric function properties on the optical response of plasmon resonant
metallic nanoparticles. Chemical Physics Letters, 399(1-3):167–171, 2004.

Kirankumar R Hiremath, Lin Zschiedrich, and Frank Schmidt. Numeri-
cal solution of nonlocal hydrodynamic drude model for arbitrary shaped
nano-plasmonic structures using nédélec finite elements. Journal of Com-
putational Physics, 231(17):5890–5896, 2012.

Ulrich Hohenester and Andreas Trügler. Mnpbem–a matlab toolbox for the
simulation of plasmonic nanoparticles. Computer Physics Communica-
tions, 183(2):370–381, 2012.

Stefan Alexander Maier. Plasmonics: fundamentals and applications.
Springer Science & Business Media, 2007.

Peter Michalski. Latticeboltzmannsolvers/docs/vnvplan/systvnvplan
at master · peter-michalski/latticeboltzmannsolvers. https:

//github.com/peter-michalski/LatticeBoltzmannSolvers/tree/

master/docs/VnVPlan/SystVnVPlan, 2019. (Accessed on 10/29/2020).

mit.edu. Checklist for code walkthroughs (draft, version 1.2, 10/30/97).
http://www.mit.edu/~mbarker/ideas/checkcode.html, 1997. (Ac-
cessed on 12/14/2020).

Peter Monk et al. Finite element methods for Maxwell’s equations. Oxford
University Press, 2003.

S. Shayan Mousavi. Spdfm/docs/problemstatement at master · sh-
mouses/spdfm · github. https://github.com/shmouses/SPDFM/tree/

master/docs/ProblemStatement, 2020a. (Accessed on 10/29/2020).

19

https://github.com/shmouses/SPDFM/tree/master/docs/Design/MG
https://github.com/shmouses/SPDFM/tree/master/docs/Design/MG
https://github.com/shmouses/SPDFM/tree/master/docs/Design/MIS
https://github.com/shmouses/SPDFM/tree/master/docs/Design/MIS
https://github.com/peter-michalski/LatticeBoltzmannSolvers/tree/master/docs/VnVPlan/SystVnVPlan
https://github.com/peter-michalski/LatticeBoltzmannSolvers/tree/master/docs/VnVPlan/SystVnVPlan
https://github.com/peter-michalski/LatticeBoltzmannSolvers/tree/master/docs/VnVPlan/SystVnVPlan
http://www.mit.edu/~mbarker/ideas/checkcode.html
https://github.com/shmouses/SPDFM/tree/master/docs/ProblemStatement
https://github.com/shmouses/SPDFM/tree/master/docs/ProblemStatement

S. Shayan Mousavi. Spdfm/docs/srs at master · shmouses/spdfm · github.
https://github.com/shmouses/SPDFM/tree/master/docs/SRS, 2020b.
(Accessed on 10/29/2020).

Spencer Smith. Blankprojecttemplate/docs/srs/srs-checklist.pdf · master
· w. spencer smith / cas741 · gitlab. https://gitlab.cas.mcmaster.

ca/smiths/cas741/-/blob/master/BlankProjectTemplate/docs/SRS/

SRS-Checklist.pdf, Sept 2020. (Accessed on 10/29/2020).

20

https://github.com/shmouses/SPDFM/tree/master/docs/SRS
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/BlankProjectTemplate/docs/SRS/SRS-Checklist.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/BlankProjectTemplate/docs/SRS/SRS-Checklist.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/BlankProjectTemplate/docs/SRS/SRS-Checklist.pdf

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance.

7.2 Usability Survey Questions?

Using the following rubric please rate the five statements found below (this
rubric is suggested by Michalski (2019)):
1. The formatting of the input file was easy to understand.

1 - strongly disagree
2 - somewhat disagree
3 - neither agree nor disagree
4 - somewhat agree
5 - strongly agree

2. The location to place the input file was easy to find.
1 - strongly disagree
2 - somewhat disagree
3 - neither agree nor disagree
4 - somewhat agree
5 - strongly agree

3. Navigating to the correct module was straightforward.
1 - strongly disagree
2 - somewhat disagree
3 - neither agree nor disagree
4 - somewhat agree
5 - strongly agree

4. The MG and MIS of this product explain the modules well.
1 - strongly disagree
2 - somewhat disagree
3 - neither agree nor disagree

21

4 - somewhat agree
5 - strongly agree

5. I would recommend this product.
1 - strongly disagree
2 - somewhat disagree
3 - neither agree nor disagree
4 - somewhat agree
5 - strongly agree

22

	Revision History
	Symbols, Abbreviations and Acronyms
	General Information
	Summary
	Objectives
	Relevant Documentation

	Plan
	Verification and Validation Team
	SRS Verification Plan
	Design Verification Plan
	Implementation Verification Plan
	Automated Testing and Verification Tools
	Software Validation Plan

	System Test Description
	Tests for Functional Requirements
	Light Source Calculation Verification (and/or Validation) Tests

	Tests for Nonfunctional Requirements
	Usability
	Maintainability

	Traceability Between Test Cases and Requirements

	Unit Test Description
	Unit Testing Scope
	Tests for Functional Requirements
	Module 4: Constant parameters module (M4)
	Module 5: Input parameters modules (M5)
	Module 6: Input Mesh modules (M6)

	Tests for Nonfunctional Requirements
	Traceability Between Test Cases and Modules

	Appendix
	Symbolic Parameters
	Usability Survey Questions?

